首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   5篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   9篇
  2014年   7篇
  2013年   5篇
  2012年   13篇
  2011年   12篇
  2010年   6篇
  2009年   8篇
  2008年   9篇
  2007年   16篇
  2006年   16篇
  2005年   13篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  1995年   5篇
  1993年   1篇
  1992年   1篇
  1966年   1篇
排序方式: 共有152条查询结果,搜索用时 265 毫秒
21.
We present carbon stable isotope, δ13C, results from air and organic matter samples collected during 98 individual field campaigns across a network of Carboeuroflux forest sites in 2001 (14 sites) and 2002 (16 sites). Using these data, we tested the hypothesis that δ13C values derived from large‐scale atmospheric measurements and models, which are routinely used to partition carbon fluxes between land and ocean, and potentially between respiration and photosynthesis on land, are consistent with directly measured ecosystem‐scale δ13C values. In this framework, we also tested the potential of δ13C in canopy air and plant organic matter to record regional‐scale ecophysiological patterns. Our network estimates for the mean δ13C of ecosystem respired CO2 and the related ‘discrimination’ of ecosystem respiration, δer and Δer, respectively, were ?25.6±1.9‰ and 17.8 ±2.0‰ in 2001 and ?26.6±1.5‰ and 19.0±1.6‰ in 2002. The results were in close agreement with δ13C values derived from regional‐scale atmospheric measurement programs for 2001, but less so in 2002, which had an unusual precipitation pattern. This suggests that regional‐scale atmospheric sampling programs generally capture ecosystem δ13C signals over Europe, but may be limited in capturing some of the interannual variations. In 2001, but less so in 2002, there were discernable longitudinal and seasonal trends in δer. From west to east, across the network, there was a general enrichment in 13C (~3‰ and ~1‰ for the 2 years, respectively) consistent with increasing Gorczynski continentality index for warmer and drier conditions. In 2001 only, seasonal 13C enrichment between July and September, followed by depletion in November (from about ?26.0‰ to ?24.5‰ to ?30.0‰), was also observed. In 2001, July and August δer values across the network were significantly related to average daytime vapor pressure deficit (VPD), relative humidity (RH), and, to a lesser degree, air temperature (Ta), but not significantly with monthly average precipitation (Pm). In contrast, in 2002 (a much wetter peak season), δer was significantly related with Ta, but not significantly with VPD and RH. The important role of plant physiological processes on δer in 2001 was emphasized by a relatively rapid turnover (between 1 and 6 days) of assimilated carbon inferred from time‐lag analyses of δer vs. meteorological parameters. However, this was not evident in 2002. These analyses also noted corresponding diurnal cycles of δer and meteorological parameters in 2001, indicating a rapid transmission of daytime meteorology, via physiological responses, to the δer signal during this season. Organic matter δ13C results showed progressive 13C enrichment from leaves, through stems and roots to soil organic matter, which may be explained by 13C fractionation during respiration. This enrichment was species dependent and was prominent in angiosperms but not in gymnosperms. δ13C values of organic matter of any of the plant components did not well represent short‐term δer values during the seasonal cycle, and could not be used to partition ecosystem respiration into autotrophic and heterotrophic components.  相似文献   
22.
23.
Inhibitory activity against subtilisin, proteinase K, chymotrypsin and trypsin was detected in the salivary glands and saliva of the cockroach Nauphoeta cinerea (Blattoptera: Blaberidae). Fractionation of the salivary glands extract by affinity chromatography followed by reverse-phase HPLC yielded five subtilisin-inhibiting peptides with molecular masses ranging from 5 to 14 kDa. N-terminal sequences and subsequently full-length cDNAs of inhibitors designated NcPIa and NcPIb were obtained. The NcPIa cDNA contains 216 nucleotides and encodes a pre-peptide of 72 amino-acid residues of which 19 make up the signal peptide. The cDNA of NcPIb consists of 240 nucleotides and yields a putative secretory peptide of 80 amino-acid residues. Mature NcPIa (5906.6 Da, 53 residues) and NcPIb (6713.3 Da, 60 residues) are structurally similar (65.4% amino acid overlap) single-domain Kazal-type peptidase inhibitors. NcPIa with Arg in P1 position and typical Kazal motif VCGSD interacted stoichiometrically (1:1) with subtilisin and was slightly less active against proteinase K. NcPIb with Leu in P1 and modified Kazal motif ICGSD had similar activity on subtilisin and no on proteinase K but was active on chymotrypsin.  相似文献   
24.
Resembling the main function of insect adipokinetic hormones (AKHs), the vertebrate hormone glucagon mobilizes energy reserves and participates in the control of glucose level in the blood. Considering the similarities, the effect of porcine glucagon was evaluated in an insect model species, the firebug Pyrrhocoris apterus. Using the mouse anti-glucagon antibody, presence of immunoreactive material was demonstrated for the first time in the firebug CNS and gut by ELISA. Mammalian (porcine) glucagon injected into the adult bugs showed no effect on hemolymph lipid level or on the level of AKH in CNS and hemolymph, however, it activated an antioxidant response when oxidative stress was elicited by paraquat, a diquaternary derivative of 4, 4′-bipyridyl. Glucagon elicited the antioxidant response by increasing glutathione and decreasing protein carbonyl levels in hemolymph, decreasing both protein carbonyl and protein nitrotyrosine levels in CNS. Additionally, when co-injected with paraquat, glucagon partially eliminated oxidative stress markers elicited by this redox cycling agent and oxidative stressor. This indicates that glucagon might induce an antioxidant defense in insects, as recently described for AKH. Failure of glucagon to alter AKH level in the bug's body indicates employment of an independent pathway without involving the native AKH.  相似文献   
25.
Micromeria longipedunculata Bräuchler (syn. M. parviflora (Vis.) Rchb.) is an endemic Illyric-Balkan plant species from Bosnia and Herzegovina, Montenegro, and Albania. We investigated types and distribution of trichomes, pollen morphology, and chemical composition of essential oil (analysed by GC and GC-MS) in M. longipedunculata. Non-glandular trichomes, peltate trichomes, and two types of capitate trichomes (type 1 composed of one basal epidermal cell, and one head cell with subcuticular space; type 2 composed of one basal epidermal cell, two or three stalk cells, and one head cell with subcuticular space) were observed on leaves, bracteoles, the calyx, corolla, and the stem. The pollen grains had six apertures which were set in the equatorial pollen belt and showed medium reticulate ornamentation. A phytochemical analysis of essential oils from four different localities is characterized by similar chemical composition with spathulenol (23.7–39.5%), piperitone oxide (7.7–12.1%) and piperitone (7.3–8.9%) as the major compounds.  相似文献   
26.
Abstract.  Changes in the content of adipokinetic hormone (AKH), the adipokinetic response and the walking activity of 10-day-old adult macropterous females of the firebug, Pyrrhocoris apterus (L.), reared under long-day (LD) photoperiod (LD 18 : 6 h) are compared with those exposed for 3 days to constant darkness (DD). Diel changes of all the parameters studied in LD females persist in females kept in constant dark. A positive correlation exists between diel changes of AKH content in the central nervous system (CNS) in the LD and DD females, and a negative correlation in the AKH level in haemolymph and walking activity. In addition, there is a positive correlation between diel changes of AKH level in haemolymph and walking activity in macropterous females reared under LD conditions, as well as in those transferred to constant darkness. The data suggest that there is some feedback between the release of AKH from CNS into the haemolymph and walking activity in macropterous females. Preliminary studies on the simultaneous expression of mRNA for the period gene and a positive reaction to an antibody against AKH in the same corpus cardiacum cells suggest that the period gene may be involved in regulating the AKH content in this gland.  相似文献   
27.
Urinary microRNAs (miRNAs) are emerging as clinically useful tool for early and non‐invasive detection of various types of cancer including bladder cancer (BCA). In this study, 205 patients with BCA and 99 healthy controls were prospectively enrolled. Expression profiles of urinary miRNAs were obtained using Affymetrix miRNA microarrays (2578 miRNAs) and candidate miRNAs further validated in independent cohorts using qRT‐PCR. Whole‐genome profiling identified 76 miRNAs with significantly different concentrations in urine of BCA compared to controls (P < 0.01). In the training and independent validation phase of the study, miR‐31‐5p, miR‐93‐5p and miR‐191‐5p were confirmed to have significantly higher levels in urine of patients with BCA in comparison with controls (P < 0.01). We further established 2‐miRNA‐based urinary DxScore (miR‐93‐5p, miR‐31‐5p) enabling sensitive BCA detection with AUC being 0.84 and 0.81 in the training and validation phase, respectively. Moreover, DxScore significantly differed in the various histopathological subgroups of BCA and decreased post‐operatively. In conclusion, we identified and independently validated cell‐free urinary miRNAs as promising biomarkers enabling non‐invasive detection of BCA.  相似文献   
28.
This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (Reco). In particular, we analyse the effect of the extrapolation of night‐time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long‐term data sets. For this analysis, we used 16 one‐year‐long data sets of carbon dioxide exchange measurements from European and US‐American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of Reco, derived from long‐term (annual) data sets, does not reflect the short‐term temperature sensitivity that is effective when extrapolating from night‐ to daytime. Specifically, in summer active ecosystems the long‐term temperature sensitivity exceeds the short‐term sensitivity. Thus, in those ecosystems, the application of a long‐term temperature sensitivity to the extrapolation of respiration from night to day leads to a systematic overestimation of ecosystem respiration from half‐hourly to annual time‐scales, which can reach >25% for an annual budget and which consequently affects estimates of GEP. Conversely, in summer passive (Mediterranean) ecosystems, the long‐term temperature sensitivity is lower than the short‐term temperature sensitivity resulting in underestimation of annual sums of respiration. We introduce a new generic algorithm that derives a short‐term temperature sensitivity of Reco from eddy covariance data that applies this to the extrapolation from night‐ to daytime, and that further performs a filling of data gaps that exploits both, the covariance between fluxes and meteorological drivers and the temporal structure of the fluxes. While this algorithm should give less biased estimates of GEP and Reco, we discuss the remaining biases and recommend that eddy covariance measurements are still backed by ancillary flux measurements that can reduce the uncertainties inherent in the eddy covariance data.  相似文献   
29.
In Southampton Water, UK, the recent (c. 150 years ago) interspecific hybridisation between Spartina alterniflora (2n = 6x = 62; A-genome) and S. maritima (2n = 6x = 60; M-genome) gave rise to the homoploid hybrid (S. × townsendii, 2n = 6x = 62), and subsequently to the invasive allododecaploid species S. anglica (2n = 12x = 120–124) that has since spread worldwide. To address the question of dynamics of mixed ploidy populations involving these plants, we analysed several Spartina populations (fifty one individuals) in Southern England, UK, one of which was the presumed place of origin of the homoploid hybrid (Hythe). Using a combination of flow cytometry and ribosomal DNA (rDNA) genotyping we were able to identify the genomic composition and ploidy level of each individual analysed. The data show that the homoploid hybrid still dominates the population at Hythe (82 % of individuals collected in that locality) since its origin in the nineteenth century. We also identified S. × townsendii for the first time on Hayling Island (66 % individuals), indicating dispersal beyond its likely origin. The fertile allododecaploid S. anglica was mainly found in populations outside the initial hybridisation site, on Hayling Island and at Eling Marchwood. Quantification of the rDNA contributions from each parental genome showed that the ratios were mostly balanced in S. × townsendii. However, two (3 %) S. anglica individuals analysed have lost nearly all M-genome homeologs, indicating extensive repeat loss. Such variation indicates that despite the presumed single allopolyploid origin of S. anglica and genetic uniformity at other loci, it has undergone substantial changes at the rDNA loci following genome duplication.  相似文献   
30.

Background

D-amino acids are far less abundant in nature than L-amino acids. Both L- and D-amino acids enter soil from different sources including plant, animal and microbial biomass, antibiotics, faeces and synthetic insecticides. Moreover, D-amino acids appear in soil due to abiotic or biotic racemization of L-amino acids. Both L- and D-amino acids occur as bound in soil organic matter and as “free“ amino acids dissolved in soil solution or exchangeably bound to soil colloids. D-amino acids are mineralized at slower rates compared to the corresponding L-enantiomers. Plants have a capacity to directly take up “free“ D-amino acids by their roots but their ability to utilize them is low and thus D-amino acids inhibit plant growth.

Scope

The aim of this work is to review current knowledge on D-amino acids in soil and their utilization by soil microorganisms and plants, and to identify critical knowledge gaps and directions for future research.

Conclusion

Assessment of “free“ D-amino acids in soils is currently complicated due to the lack of appropriate extraction procedures. This information is necessary for consequent experimental determination of their significance for crop production and growth of plants in different types of managed and unmanaged ecosystems. Hypotheses on occurrence of “free“ D-amino acids in soil are presented in this review.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号